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Abstract

Structural failure often follows the initiation of cracks occurring at corners, free edges or interfaces. Continuum

damage mechanics gives quantitative information about such cracking. But when used in a fully coupled manner (with

elasticity and plasticity), it leads to costly computations.

In order to obtain helpful results for a fine and fast design, we propose to determine localized plasticity and damage

by use of local post-calculations, which follow a simple elastic finite element computation. Energetic methods such as

Neuber’s, such as the strain energy density or as the complementary energy density methods, are justified for small scale

yielding by use of path-independent integrals. They are extended to cyclic loading inducing fatigue and the case of

thermal stresses is considered. For plane problems, these methods are completed by the analytical determination of the

stress triaxiality along free edges or rigid inclusions.

The crack initiation conditions are then quickly estimated by the time-integration of Lemaitre’s damage law. Cal-

culations made for a holed plate (plane strain) and for a bi-axial testing specimen (plane stress) validate the meth-

ods. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many criteria are used for structural design and for material selection. Fracture mechanics is powerful
when a cracking state exists. If the safety conditions are defined by the nonexistence of cracks, continuum
damage mechanics (CDM) is the adequate design tool for structures submitted to monotonic loading as
well as to fatigue loading (Lemaitre, 1971; Hayhurst and Leckie, 1973; Hult and Broberg, 1974; Murakami
and Ohno, 1978; Lemaitre and Chaboche, 1985; Kracinovic and Fonseka, 1981; Lemaitre, 1992).

Damage may be taken into account in a fully coupled manner with elasticity and plasticity, but this leads
to costly computations (Benallal et al., 1988; Grange et al., 2000) which are incompatible with an early
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design and with repeated resolutions of the nonlinear mechanical problem. As pre-design is concerned, we
need quick methods for the determination of structural failure, also in fatigue!

When small scale yielding conditions apply, we propose here a three-steps procedure based on an ac-
curate linear elastic FE computation (first step) in which the layers are assumed to be elastic. The second
step is the evaluation of the localized plasticity in the stress concentration zones previously exhibited.
Local energetic methods such as Neuber’s (1961), as the strain energy density (SED, Glinka, 1985) and the
complementary energy density (CED) methods are justified by use of path-independent integrals (Section
2). Neuber’s method is also completed for locally 2D problems by the study of the stress triaxiality along a
free edge. The third step concerns the post-calculation of damage up to crack initiation by the time inte-
gration of Lemaitre’s damage evolution law during the whole loading process.

2. Extended Neuber’s method

Neuber’s method initially proposed for shear (Neuber, 1961), looks like an energy equivalence between
the elastic and the elasto-plastic calculations of the same geometry submitted to the same loading. For
unidimensional states of stress, the product stress � strain in elasticity is assumed to be locally identical to
the same product calculated by means of an elasto-plastic analysis. The plastic state is then determined as
the matching of the constitutive equation with the hyperbola stress � strain ¼ constant (Eq. (1), Fig. 4).
This local method leads to a violation of the equilibrium. It is applied at stress concentration points.

2.1. Tridimensional states of stress

For tridimensional states of stress, the fundamental hypothesis may be written as

rijeij ¼ ðrijeijÞelas monotonic loading ð1Þ

DrijDeij ¼ ðDrijDeijÞelas fatigue loading ð2Þ

where Dr and De stand for the stress and strain amplitudes during a cyclic loading and ð�Þelas means ‘value
determined from an elastic computation’. An alternative to Eq. (1) may be proposed as

reqeeq ¼ ðreqeeqÞelas ð3Þ

where req and eeq are the von Mises equivalent stress and strain. The theoretical justification of Section 3
will lead us to use (1) instead of (3) as far as free edges are concerned.

Plastic behavior is described by an integrated Hencky–Mises law,

rij ¼ Eijklekl � 3G
rD
ij

req

gðreqÞ ð4Þ

p ¼ gðreqÞ ¼ R�1ðreq � ryÞ ð5Þ

where Eijkl is the Hooke tensor (isotropic), E and G are the Young’s and shear modulus, m the Poisson’s
ratio, p the accumulated plastic strain, RðpÞ the isotropic hardening law and ry the yield stress. Eq. (5)
corresponds to the yield criterion f ¼ req � RðpÞ � ry ¼ 0.

The von Mises equivalent stress is solution of the nonlinear equation (1) rewritten:

r2
eq

3G
þ gðreqÞreq ¼

R2
eq

3G
þ 3ð1 � 2mÞ

E
R2

H

�
� r2

H

�
ð6Þ

We note with capital letters the elastic solution Rij ¼ ðrijÞelas;Req ¼ ðreqÞelas;RH ¼ ðrHÞelas.
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The hydrostatic stresses of the elastic and plastic solutions (resp. RH and rH) were assumed to be close in
Lemaitre and Chaboche’s (1985) work. In the general case they are different and can be derived from the
knowledge of the stress triaxiality ratio Tr defined as the hydrostatic stress divided by the equivalent stress
(Rice and Tracey, 1969),

Tr ¼ rH

req

rH ¼ rkk

3
ð7Þ

The knowledge of this ratio is an important key in the application of Neuber’s method. Introducing the
triaxiality function Rm,

Rm ¼ 2
3
ð1 þ mÞ þ 3ð1 � 2mÞTr2 ð8Þ

Neuber’s von Mises equivalent stress for 3D loading is finally solution of

rijeij ¼
r2

eqRmðTrÞ
E

þ gðreqÞreq ¼ rijeij
� �

elas
¼

R2
eq Rmð Þelas

E
ð9Þ

where Rm(Tr) has to be determined.

2.2. Stress triaxiality ratio on free edges in plane problems

We expose here an original way to derive under plane deformation assumption the closed-form ex-
pression of the stress triaxiality for points located along free edges.

2.2.1. Plane stress
For a plane stress state, the points located along free edges are submitted to pure tension (or com-

pression). The value of the triaxiality ratio is �1/3.

2.2.2. Plane strain
For a plane strain state, one can show that Tr only depends on the accumulated plastic strain or, in an

equivalent manner, only depends on the von Mises equivalent stress.
Elasticity: The triaxiality ratio evaluated at points located along free edges only depends on Poisson’s

ratio m. Tr neither depends on the loading type nor on its intensity. For m ¼ 0, Tr ¼ 1=3 (some composite
materials). For m ¼ 1=3, Tr ¼ 0:5. For m 	 0:5, Tr ¼ 1=

ffiffiffi
3

p
	 0:58 (rubber). More generally,

Tr ¼ 1 þ m

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � m þ m2

p ð10Þ

Plasticity with linear hardening: For plasticity with linear isotropic hardening, the yield function is
written as f ¼ req � Kp � ry ¼ 0, where K is the plastic ‘‘tangent’’ modulus. The evolution laws governing
the internal thermodynamics variables accumulated plastic strain p and plastic strains ep

ij are derived from
the normality rule and from the consistency condition df ¼ 0 during the plastic flow.

The boundary conditions (free edges of normal e1: ri1 ¼ 0), the plane strain condition ei3 ¼ 0 and the
elasto-plastic behavior considered altogether lead to ð _rr33 � m _rr33Þ=E þ ð2r33 � r22Þ _pp=2req ¼ 0 and to the
following set of equations:

r22 ¼ ureq and r33 ¼ 1
2

u� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 3u2

4

q� �
req

dp
Kpþry

¼
1 � 2m þ 3u

2
1 � 3u2

4

� ��1=2

2ðK þ EÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 3u2

4

q
� Kð1 � 2mÞu

du

8>>>><
>>>>:

ð11Þ
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with dreq ¼ Kdp and where u ¼ r22=req is a dead variable for the integration. No assumption about the
loading proportionality is made. With the notations,

v ¼ Kð1 � 2mÞ
2ðK þ EÞ u0 ¼ 1

�
� m þ m2

��1=2 ð12Þ

the closed-form expression for the Tr(p) law is then governed by the parametric representation:

TrðuÞ ¼ u
2
� 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � 3u2

p
ð13Þ

pðuÞ ¼ ry

K

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 3u2

0

4

q
� vu0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 3u2

4

q
� vu

0
B@

1
CA

-

exp W arcsin

ffiffiffi
3

p
u

2

 !" #u
u0

0
@

1
A� ry

K
ð14Þ

where

W ¼ 2
ffiffiffi
3

p
v

3 þ 4v2
1

�
� 2v

1 � 2m

�
- ¼ 2v

1 � 2m
þ 2v2

3 þ 4v2
1

�
� 2v

1 � 2m

�
ð15Þ

Eqs. (13) and (14) may be rewritten as a law Tr ¼ TrðpÞ or with Eq. (5) as Tr ¼ TrðreqÞ: the triaxiality
ratio on a free edge depends on the von Mises stress only (Fig. 1). For Poisson’s ratios larger than 0.3, there

Fig. 1. Stress triaxiality along a free edge.

3292 R. Desmorat / International Journal of Solids and Structures 39 (2002) 3289–3310



is a slight difference about Tr evaluated in elasticity or in plasticity: the triaxiality remains between 0.5 and
0.58. As soon as elastic strains are negligible, Tr reaches a saturation value. For metals it is Tr ¼ 0:58. The
Table 1 gives the values of Trsat as a function of K/E for m ¼ 0, 0.3, 0.5.
Nonlinear hardening/damage: If the hardening law is not linear, variables p and u of Eq. (11) cannot be

separated anymore. One has to fit a linear law in the plastic strain range under consideration and to apply
Eqs. (13) and (14) as well. When isotropic damage occurs, the consideration of the effective stress concept
(Kachanov (1958) and Section 4.1) formally leads to the same calculations and the determination of the
triaxiality by Eqs. (13) and (14) remains valid.

To conclude, one can say that for standard Poisson’s ratios and for plane deformation states, the stress
triaxiality ratio at free edge points does not depend much on the loading, which is then quasi-proportional
(stress tensor locally proportional to a constant tensor, see paragraph 2.2.2). For plane stress Tr ¼ 1=3
when for plane strain Tr ¼ 0:58 is a good value to consider for a quick method. In the general 3D case, Tr
in plasticity may be taken equal to the stress triaxiality ratio computed in elasticity, Tr 	 Trð Þelas. Once Tr is
known, the triaxiality function Rm is easily calculated (Eqs. (8) and (9)) can be used to determine the von
Mises equivalent stress as well as the accumulated plastic strain (Eq. (5)).

3. Theoretical justification and other energetic methods

A first attempt to justify Neuber’s method is related to the virtual work principle. For any kinematically
admissible displacement field u� (structure X of frontier oXÞ,Z

X
rije

�
ij dV ¼

Z
oX

rijnju�i dS ð16Þ

If the small scale yielding hypothesis is made, one can compare the second member of (16) coming from
an elastic and a plastic computation,Z

oX
rijnju�i dS

� �
elastic
computation

	
Z
oX

rijnju�i dS
� �

elasto-plastic
computation

ð17Þ

From the virtual work principle, we end up to a global but useless formulation of Neuber’s Method:Z
X

rije
�
ij dV

� �
elastic
computation

	
Z

X
rije

�
ij dV

� �
elasto-plastic
computation

ð18Þ

Another way to proceed is to consider the path-independent integrals (Rice, 1968; Bui, 1978a)I
C
W dy � rijnj

oui
ox

ds and

I
C
W �dy � uinj

orij

ox
ds ð19Þ

vanishing on any closed contour which does not surround holes or cavities. W and W � are respectively the
SED and the CED from which the stresses and the strains are derived:

Table 1

Saturation value Trsat

K=E

10�6 0.1 0.25 0.5

Trsatðm ¼ 0Þ 0.58 0.56 0.54 0.50

Trsatðm ¼ 0:3Þ 0.58 0.57 0.56 0.55

Trsatðm ¼ 0:5Þ 0.58 0.58 0.58 0.58
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rij ¼
oW
oeij

eij ¼
oW �

orij
ð20Þ

This framework applies to constitutive laws such as elasticity or as Hencky–Mises plasticity (no un-
loading). For incremental plasticity, the time-integration under proportional loading hypothesis leads to
the appropriate definition of W or W � (Eqs. (29)–(31), (35) and (36)).

3.1. Local energetic methods

Consider now stress concentration zones, confined as drawn in Figs. 2 and 3 and determined numerically
first in elasticity then in elasto-plasticity. As long as small scale yielding applies, the sizes of the plastic zones
given by the two analysis are not very different. For each computation, it is possible to evaluate integrals
(19) along two open paths, C1 along the free edge or the rigid inclusion (a rivet for example) and C2 far from
the plastic zone. Small scale yielding hypothesis equalizes the integrals along C2 coming from the elastic and
the elasto-plastic computations, i.e.,Z

C2

W dy
�

� rijnj
oui
ox

ds
�

elastic
computation

	
Z
C2

W dy
�

� rijnj
oui
ox

ds
�

elasto-plastic
computation

ð21Þ

By use of the path-independence property, these integrals are also equal along C1. Along a free edge we
get: Z

C1

W dy
� �

elastic
computation

	
Z
C1

W dy
� �

elasto-plastic
computation

ð22Þ

Fig. 2. Stress concentration zone close to a free edge.

Fig. 3. Stress concentration zone close to a rigid inclusion.
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By use of the dual integral,

Z
C1

W �dy
�

� uinj
orij

ox
ds
�

elastic
computation

	
Z
C1

W �dy
�

� uinj
orij

ox
ds
�

elasto-plastic
computation

ð23Þ

which simplifies along a rigid inclusion (u ¼ 0) as:Z
C1

W �dy
� �

elastic
computation

	
Z
C1

W �dy
� �

elasto-plastic
computation

ð24Þ

Along a free edge stress concentration, the mean SED is locally the same for an elastic and for an elasto-
plastic computations using the same boundary conditions (Eq. (22)). Along a rigid inclusion, the equality
concerns the mean CED. For plastic zone with small gradient, we may write the local equality of the
energies calculated in elasticity and in elasto-plasticity.

Because of the equality

rijeij ¼ W þ W � ð25Þ
Neuber’s method will give results (von Mises stress, accumulated plastic strain) between those given by the
SED and CED methods.

To sum up, three energetic methods are justified for small scale yielding (as represented for tension in
Fig. 4):

• Neuber’s method (Eq. (1)),
• SED method: Wplas ¼ Welas,
• CED method: W �

plas ¼ W �
elas.

In the following subsections we particularize these methods for elasto-plasticity with linear isotropic
hardening and with exponential isotropic hardening (for monotonic proportional loading, kinematic
hardening can be reduced to a supplementary isotropic contribution, Desmorat (2000)).

3.1.1. Linear isotropic hardening
Assume that an elastic computation has given the von Mises stress at stress concentration point, noted

Req. The application of the energetic methods leads to the evaluation of the von Mises stress in plasticity. In
general, the relationship reqðReqÞ is implicit. Nevertheless, it can be explicited when linear hardening R ¼ Kp
is considered.

For each method we define the auxiliary function h as the ratio (<1)

hðReqÞ ¼
req

Req

ð26Þ

The energetic methods are compared in Fig. 5 for tension triaxiality (Tr ¼ 1=3). For plastic materials
with small K/E ratio (most materials), the complementary energy remains small in comparison with the
strain energy. Neuber’s and SED methods give then close results.

• 3D Neuber’s method

rijeij ¼
r2

eqRm

E
þ reqg req

� �
¼

r2
eqRm

E
þ

req req � ry

� �
K

ð27Þ
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h Req

� �
¼

E
K ry þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
K ry

� �2 þ 4 Rm þ E
K

� �
R2

eqRm

� �
elas

r
2 Rm þ E

K

� �
Req

ð28Þ

• 3D SED method

W ¼
r2

eqRm

2E
þ
Z req

ry

reqg0 req

� �
dreq ¼

r2
eqRm

2E
þ

r2
eq � r2

y

2K
ð29Þ

h Req

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

eqRm

� �
elas

þ E
K r2

y

Rm þ E
K

� �
R2

eq

vuuut ð30Þ

• 3D CED method

W � ¼
r2

eqRm

2E
þ
Z req

ry

g req

� �
dreq ¼

r2
eqRm

2E
þ

req � ry

� �2

2K
ð31Þ

Fig. 4. Energetic methods (Neuber, SED, CED).
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h Req

� �
¼

E
K ry þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rm R2

eqRm

� �
elas

þ E
K R2

eqRm

� �
elas

� r2
yRm

h ir
Rm þ E

K

� �
Req

ð32Þ

3.1.2. Exponential isotropic hardening
Exponential hardening is written RðpÞ ¼ R1 1 � e�cpð Þ where R1 and c are material parameters. The

function g used in the calculation of the accumulated plastic strain (Eq. (4)) is then defined as:

p ¼ g req

� �
¼ � 1

c
ln

R1 þ ry � req

R1

� �
ð33Þ

• Neuber’s method

rijeij ¼
r2

eqRm

E
þ reqp ¼ ðrijeijÞelas ð34Þ

• SED method

W ¼
r2

eqRm

2E
þ
Z req

ry

req dp ¼
r2

eqRm

2E
þ R1
�

þ ry

�
p � 1

c
RðpÞ ¼ Welas ð35Þ

• CED method

W � ¼
r2

eqRm

2E
þ
Z req

ry

pdreq ¼
r2

eqRm

2E
þ RðpÞð � R1Þp þ

1

c
RðpÞ ¼ W �

elas ð36Þ

Again, the stress triaxiality in plasticity has to be known in order to apply the energetic methods, from
which rH ¼ Tr � req and RH ¼ Tr � Req.

3.2. Extension to cyclic fatigue loading

Path-independent integrals (19) are still defined for cyclic loading. The only need is to consider a cyclic
plasticity constitutive law written in terms of stress and strain amplitudes Drij, Deij. Formally,

Fig. 5. Energetic methods for linear hardening; function hðReqÞ ¼ req=Req (E ¼ 200 GPa, K ¼ 6 GPa, Tr ¼ 1=3).
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Deij ¼
ox�

oDrij
or Drij ¼

ox
oDeij

ð37Þ

where

x� ¼
Z t

0

Deij
dDrij

dt
dt x ¼

Z t

0

Drij
dDeij

dt
dt ð38Þ

3.2.1. Expression of the energetic methods
The following energetic methods extended to cyclic loading can be justified in the same manner than for

the monotonic case:

DrijDeij ¼ DrijDeij
� �

elas
extension of Neuber method ð39Þ

xðDeijÞ ¼ xelas extension the SED method ð40Þ

x�ðDrijÞ ¼ x�
elas extension of the CED method ð41Þ

Still from an elastic computation, their application leads to the fast determination of the equivalent stress
amplitude ðDrÞeq and of the accumulated plastic strain increment over one cycle Dp. If the applied load,
noted F, ranges between two symmetric values �Fmax and þFmax, the knowledge of ðDrÞeq is sufficient to
determine the maximum von Mises stress and the failure conditions (by integration of the damage law). If
the loading is not symmetrical, the cyclic energetic method has to be completed by use of a monotonic
method in order to evaluate the maximum von Mises stress. The corresponding damage law is derived in
Section 4.3.

3.2.2. Potentials for linear kinematic hardening
For uniaxial tension–compression, the integration of the constitutive laws of elasto–plasticity with ki-

nematic hardening leads to the following equations (with Dr stress amplitude, De strain amplitude, Dep

plastic strain amplitude, Dp accumulated plastic strain increment over one cycle),

De ¼ 2ry

E
þ Dr � 2ry

Ct
ð42Þ

Dp ¼ 2Dep ¼ 2
Dr � 2ry

Ct
ð43Þ

where Ct is the tangent modulus. The potentials needed to apply the energetic cyclic methods are:

DrDe ¼ 2ry

E

�
þ Dr � 2ry

Ct

�
Dr ð44Þ

x ¼ Ct

2
De

!
� 2ry

1

E

�
� 1

Ct

�"2

ð45Þ

x� ¼ Ct

2
Dr

!
þ 2ry

1

E

�
� 1

Ct

�"2

ð46Þ

For general 3D cyclic loading, such potentials may be derived from the 3D constitutive laws under the
assumption of a proportional loading: in any point M of the structure, the stress tensor remains propor-

tional to a time-independent tensor T ¼ T ðMÞ. With the normalization Teq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
TD
ij TD

ij

q
¼ 1, this leads to:
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r ¼ T s; s ¼ sðtÞ and sj j ¼ req ð47Þ

X ¼ TDX ; X ¼ X ðtÞ ð48Þ

ep ¼ 3
2
TDep; ep ¼ epðtÞ and _pp ¼ j _eepj ð49Þ

and any 3D equation reduces to a scalar law. For example, the linear kinematic hardening evolution law
X ¼ 2=3Cep reduces to X ¼ Cep with C the plastic modulus. The time-integration of the 3D constitutive
equation is then similar to the one for tension/compression. We finally get the 3D laws as:

Deij ¼
1 þ m
E

Drij �
m
E

Drkkdij þ Dep
ij ð50Þ

Dep
ij ¼

3

2C

DrD
ij

Drð Þeq

Drð Þeq

D
� 2ry

E
ð51Þ

Dp ¼ 2Dep ¼ 2

C
Drð Þeq

D
� 2ry

E
ð52Þ

and Eqs. (42) and (43) are a particular case of (50) and (52).
The potentials are finally:

DrijDeij ¼
Drð Þ2

eqRm

E
þ

Drð Þeq

C
Drð Þeq

D
� 2ry

E
ð53Þ

x ¼
Drð Þ2

eqRm

2E
þ

Drð Þ2
eq � 4r2

y

D E
2C

ð54Þ

x� ¼
Drð Þ2

eqRm

2E
þ

Drð Þeq � 2ry

D E2

2C
ð55Þ

where Rm is the triaxiality function (8) in which Tr ¼ ðDrÞH=ðDrÞeq, defines the cyclic stress triaxiality ratio
(and ðDrÞH ¼ trace Dr=3). Those equations are similar to Eqs. (27), (29) and (31) obtained for the
monotonic case with linear hardening. They lead to the same closed from expressions Dreq ¼ hðDReqÞDReq.
The functions h are those of Section 3.1.1 in which req, Req, ry and K have to be formally replaced by Dreq,
DReq, 2ry and C.

3.3. Thermal stresses

Thermo-elasticity constitutive equation (56) defines an additional thermal expansion leading to thermal
stresses,

eij ¼ E�1
ijklrkl þ ahdij or rij ¼ Eijklekl � 3ajhdij ð56Þ

where h is the temperature variation; a ¼ aðhÞ is the thermal expansion coefficient and j is the com-
pressibility modulus (elasticity coefficients may also depend on the temperature). The Helmhotz free energy
density qw and Gibbs free enthalpy qw� are classically:

qw ¼ 1
2
Eijkleijekl � 3ajhekk þ 1

2
Bh2; qw� ¼ max

e
rijeij
�

� qw
�

ð57Þ
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The derived state laws are:

rij ¼
oqw
oeij

Sv ¼ � oqw
oh

ð58Þ

or,

eij ¼
oqw�

orij
Sv ¼

oqw�

oh
ð59Þ

Sv is the volumic entropy.
Extension of integrals (19) to thermo-elasticity introduces an additional term which is not a contour

integral. Bui (1978b) proposes to write:

I ¼ �
Z

C
qw� dy

%
� uinj

orij

ox
ds
&
þ
Z
A
Sv

oh
ox

dS ð60Þ

J ¼
Z

C
qwdy

%
� rijnj

oui
ox

ds
&
þ
Z
A
Sv

oh
ox

dS ð61Þ

The integrals thus defined are nevertheless path-independent and vanish for any closed path not sur-
rounding holes or cavities. The area A is delimited by the contour C. When the material temperature is
uniform, J reduce to Rice classical J -integral. An equivalent definition of J easier to use and called Jh has
been introduced by Aisworth et al. (1978),

Jh ¼
Z

C
W dy
%

� rijnj
oui
ox

ds
&
þ
Z
A

3aj
oh
ox

ekkdS ð62Þ

where the elastic energy is in fact W ¼ qw � Bh2=2.
In the case of adiabatic conditions and in the case of a linear temperature variation, it is then possible to

propose energetic methods by taking into account the temperature dependence of the material parameters.
In the case of a general nonuniform temperature field, the existence of the additional surface integral leads
to the nonequality of the energies locally calculated at a point in isothermal elasticity, in thermo-elasticity
or in thermo–elasto-plasticity. Then, none of the energetic method may be justified.

3.3.1. Adiabatic conditions
An interesting case is to consider adiabatic loading conditions for which Sv ¼ 0. Eqs. (60) and (61)

surface integrals vanish. Plasticity still being treated as nonlinear elasticity, Neuber’s method remains
unchanged when the SED method becomes the Helmhotz free energy density method,

qw ¼ qwð Þthermo-elasticity ð63Þ
and the CED method becomes the Gibbs free enthalpy density method,

qw� ¼ qw�ð Þthermo-elasticity ð64Þ

3.3.2. Linear temperature variation
We consider here a loading (neither isotherm, neither adiabatic) with a linear temperature variation in

the given zone of stress concentration. If h is linear in the x1-coordinate,

h ¼ ax1 þ b ð65Þ
Bui (1978b) has shown that in this particular case the Jh-integral can then be written as a contour integral,

Jh ¼
Z

C
W ðe; hÞn1

%
þ 3ajaðu1 þ g2Þn1 � rijnj

oui
ox

&
ds ð66Þ

where g2 is a x2-primitive of the e22 strain component.
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This last formula applies for elasto-plasticity as well with an adequate definition of W . The energetic
methods proposed to evaluate edge-plasticity are then only justified when the second term inside integral
(66) vanishes, i.e. for structures with a weak thickness temperature variation.

4. Localized damage and crack initiation conditions

We assume now that an elastic FE computation followed by a local energetic analysis gives a good
estimation of the plasticity and the triaxiality at the stress concentration point. Crack initiation conditions
are derived afterwards by use of CDM (post-processing). For a ‘‘fast’’ estimation of the damage, this
uncoupled method gives results with the same order of accuracy than the energetic methods previously
described.

For ductile damage and low cycle fatigue, damage occurs at the scale of the representative volume el-
ement (RVE) and Lemaitre’s damage model applies. The damage evolution law is integrated straight
forward with some simplifications.

We do not consider here the case of brittle damage or high cycle fatigue for which the behavior remains
elastic at the RVE scale (plasticity and damage only occur at a micro-scale). The crack initiation conditions
may nevertheless be determined by use of CDM with a two scale damage model (Lemaitre and Doghri,
1994; Lemaitre et al., 1999; Desmorat, 2000; Desmorat and Lemaitre, 2001).

4.1. Effective stress concept and damage law

Damage is described by the state variable D which models a loss of resisting area due to micro-cracks
and micro-cavities (06D < 1). Failure of the RVE occurs when D reaches its critical value Dc. Isotropic
damage is coupled to elasticity and plasticity by means of the effective stress tensor, ~rrij ¼ rij=ð1 � DÞ, i.e.
the stresses rij are replaced by ~rrij in the elasticity law as well as in the yield criterion.

This feature is important because it means that the integrated plasticity law coupled to damage may be
derived as the Hencky–Mises law in which the stress tensor is replaced by the effective stress tensor, i.e.
~rrij ¼ oW =oeij (no unloading). Thus, when dealing with damage one has to consider the I and J contour
integrals with rij replaced by ~rrij. As long as plasticity and damage remain localized, the energetic methods
are formally the same as before with rij replaced by ~rrij. They directly lead to the fast estimation of the
accumulated plastic strain and of the effective stress tensor.

The following damage evolution law (Lemaitre, 1992),

_DD ¼ Y
S

� �s

_pp if pP pD; Y ¼
~rr2

eqRm

2E
ð67Þ

is used. It applies to damage induced by plasticity and takes into account the stress triaxiality effect on the
growth of damage. The time integration of Eq. (67) allows for the quantification of D for monotonic
loading, for fatigue loading (Dufailly and Lemaitre, 1995) as well as for creep fatigue conditions (Sermage
et al., 2000). The damage strength S, the damage exponent s, the critical damage Dc are material parameters
and pD is the loading dependent damage threshold. The energy density release rate Y (associated with D)
and the accumulated plastic strain p are state variables. Y is function of the effective stress (estimated by
means of the energetic method) and of the triaxiality function Rm already defined (Eq. (8), Rm does not
depend on the damage).

The damage threshold is considered here as related to the energy stored in the RVE during plastic
loading (Desmorat, 2000; Lemaitre et al., 2000; Sermage et al., 2000). This allows to represent the very
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different values experimentally obtained for monotonic and for cyclic loading: the damage threshold for
pure tension, noted epD, is of the order of magnitude of few percents (steels) when pD in fatigue may reach
few hundreds of percents. Based on the calculation of the energy stored in the RVE, the following rela-
tionship has been derived for fatigue:

pD ¼ epD

ru � ry

req max � ry

� �m

ð68Þ

where the yield stress ry, the ultimate stress ru, the threshold in pure tension epD and the exponent m are
material parameters; req max is the maximum von Mises stress reached over the cyclic loading.

The critical point of a structure is determined by means of the equivalent damage stress r� ¼ reqR1=2
m

which takes into account the triaxiality effect when von Mises criterion does not. Crack initiation occurs at
this point when D, given by the time-integration of Eq. (67), reaches its critical value:

D ¼ Dc ! crack initiation ð69Þ

4.2. Unidimensional and threedimensional monotonic loading

Assuming that damage occurs once the hardening is saturated, the plasticity criterion is quasi-verified for
the ultimate stress ru,

req

1 � D
� ru 	 0 ð70Þ

Then Y is constant for proportional loading for which the triaxiality ratio Tr remains constant,

Y ¼ r2
uRm

2E
ð71Þ

An obvious integration of the damage law written for a threedimensional and for a onedimensional
loading gives the accumulated plastic strain at crack initiation pR as a function the stress traxiality, of the
damage threshold epD and of the strain at failure eR under uniaxial conditions,

pR ¼ epD þ eR

�
� epD

�
R�s

m ð72Þ

and the state of damage for any value of p simply is:

D ¼ Dc

p � epD

eR � epD

Rs
m ð73Þ

In order to apply design criteria such as N < NR or D < Dgiven the following quantities must be known:

• the values of the accumulated plastic strain p and of the triaxiality function Rm (from the structure cal-
culation, energetic methods),

• as material parameters: the damage threshold epD, the total strain at failure in pure tension eR, the critical
damage Dc, the damage exponent s, the ultimate stress ru, the yield stress ry.

4.3. Low cycle fatigue

For low cycle fatigue, the damage D increases twice per cycle, each time corresponding to yield in tension
(plastic strain increment dpþ, damage increment dDþ) and in compression (plastic strain increment dp�,
damage increment dD�). We make here the hypothesis of a linear kinematic hardening.
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If the fatigue loading consists in cycling between the same two loads Fmin and Fmax, such an hypothesis
leads to a closed stress–strain cycle and then to:

dpþ ¼ dp� ¼ dp ¼ Dp
2

ð74Þ

where Dp is the plastic strain increment over one cycle.
Further hypotheses are made in order to simplify the damage law for general cyclic loading. We assume

first that the effective stress is correctly estimated from the previous local energetic analysis. The coupling of
the energy release rate Y with damage is made by means of ~rreq and Y is assumed not to vary much between
the applied load inducing the reach of the yield stress and the maximum load Fmax inducing the maximum
von Mises stress req max, i.e.,

Yþ 	
~rr2

eq maxRm

2E
ð75Þ

Close to the minimum load Fmin inducing the minimum von Mises stress req min, we get

Y� 	
~rr2

eq minRm

2E
ð76Þ

From Eq. (67), the damage increment over one cycle N of loading is then

dD
dN

	
~rr2s

eq max þ ~rr2s
eq min

� �
Rs

m

2ð2ESÞs Dp if
Dreq > 2ry

p > pD

(

dD
dN

¼ 0 else

8>>>><
>>>>:

ð77Þ

The local maximum von Mises effective stress at the critical point ~rreq max is determined by use of monotonic
energetic methods, D~rreq is the equivalent effective stress amplitude over the considered cycle and is de-
termined by use of the cyclic methods. Then ~rreq min ¼ ~rreq max � D~rreq.

For a complex history of loading, a numerical integration of Eq. (67) is necessary to obtain the number
of cycles to crack initiation NR corresponding to D ¼ Dc or the evolution of damage DðNÞ. If the loading is
periodic then

D ¼
~rr2s

eq max þ ~rr2s
eq min

� �
Rs

mDp

2ð2ESÞs Nð � N0Þ ð78Þ

where N0 is the number of cycles to reach p ¼ pD (pD calculated by use of Eq. (68)),

N0 ¼
pD

Dp
ð79Þ

Finally,

NR ¼ N0 þ
2ð2ESÞsDc

~rr2s
eq max þ ~rr2s

eq min

� �
Rs

mDp
ð80Þ

is the number of cycles to crack initiation. Eqs. (79)–(82) generalizes the so-called Manson–Coffin law
(Coffin, 1954; Manson, 1959). For a single level loading, the amount of damage after N cycles is:

D ¼ Dc

N � N0

NR � N0

ð81Þ
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If the loading is periodic by blocks, and if damage initiates during the first cyclic level after N0 cycles,

N1 � N0

NR1 � N0

þ Ri>1

Ni

NRi

¼ 1 ð82Þ

(if not please refer to Lemaitre and Desmorat (2001) and Desmorat and Lemaitre (2001)), The hypotheses
stated induces the linear accumulation rule of Palmgreen–Miner only if N0 is small (N0 � N1).

In order to apply design criteria such as N < NR or D < Dgiven the following quantities must be known:

• the maximum and minimum effective von Mises stress ~rreq max and ~rreq min, the value of the triaxiality func-
tion Rm and the accumulated plastic strain amplitude Dp (from the structure calculation, fast energetic
methods),

• as material parameters: the Young’s modulus E, the Poisson’s ratio m, the yield stress ry, the ultimate
stress ru, the plastic modulus C, the damage threshold in pure tension epD, the exponent m, the critical
damage Dc, the damage strength S, the damage exponent s.

4.4. Material properties of a 2 1/4 Cr steel

All the methods described need material parameters related to specific models. These parameters may be
obtained from tensile tests either monotonic or cyclic at large strain amplitude. The properties of the 2 1/4
Cr steel used in headers of fossil plants are recalled here at room temperature. The full set of temperature
dependent parameters (from 20 to 600 �C) as well as the identification procedure is given in (Sermage, 1998;
Sermage et al., 2000).

4.4.1. Elasto-plasticity
From the tests results shown in Fig. 6 an exponential hardening describes well the plastic behavior. The

material parameters for monotonic behavior at room temperature are: E ¼ 200 GPa, m ¼ 0:3, ry ¼ 180
MPa, R ¼ R1ð1 � e�cpÞ, R1 ¼ 270 MPa, c ¼ 33. The ultimate stress ru ¼ 450 MPa is equal to ry þ R1.

For strains smaller than 4%, the hardening is considered as linear: R ¼ Kp, K ¼ 6000 MPa. For cyclic
loading with strains smaller than 4%, linear kinematic hardening X ¼ 2=3 Cep of modulus C ¼ K ¼ 6000
MPa is assumed.

4.4.2. Damage
The damage parameters are deduced from damage versus accumulated plastic strain curve, the damage

being evaluated by its influence on the elasticity modulus. Monotonic (with unloading) and cyclic tests may
be considered.

Fig. 6. Identification of plasticity parameters.
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For the 2 1/4 Cr steel: epD ¼ 0:12, m ¼ 2, S ¼ 2:8 MPa, s ¼ 2, Dc ¼ 0:2 and the damage threshold in
fatigue is given by Eq. (68).

5. Application to representative structures

5.1. Thick plate with a hole

Let us first consider the academic problem of a plate with a hole. The plate is large enough to be
considered as infinite. It is thick enough for the plane strain conditions to apply. This last feature is im-
portant because previous works (Sharpe et al., 1992) have shown the limitations of classical Neuber method
under such conditions. We will show that the stress triaxiality correction Tr ¼ 0:58 proposed in Section 1
makes the energetic methods (at least Neuber and SED) accurate under the plane strain assumption.

The closed-form elastic solution of the problem of an infinite plate with a hole submitted to a tensile
remote stress r1 seems to be due to Kirsh in 1898. It constitutes our elastic reference calculation with an
usual elastic stress concentration factor of three.

For various loading intensity, we compare in Table 2 the fast plasticity estimations by the different
methods at the stress concentration point (post-calculation of the analytical solution, Eqs. (34)–(36)) with
an elasto-plastic FEM computation. The material considered is the 2 1/4 Cr steel at room temperature of
Section 4.4.

At small plastic strains, small scale yielding occurs and SED method is the most accurate. This result is
consistent with the theoretical justification of Section 3. As the applied load increases, the plasticity be-
comes less confined and Neuber method (with Tr ¼ 0:58) is the best.

5.2. Failure of a bi-axial specimen

A bi-axial testing specimen has been designed in order to exhibit stress concentrations and localized
plasticity and damage at notches (Fig. 7). Computations of the specimen have been made in elasticity, in
elasto-plasticity and in elasto-plasticity coupled to damage. Due to the load capacity of the machine, a 4.5
mm thin and 120 mm long specimen is considered and plane stress conditions apply. The edges are then in
pure tension with a stress triaxiality ratio of 1/3.

For monotonic loading, the local plasticity levels are obtained by use of the energetic methods. They are
compared to FE computations for points located on the edge (point A, Fig. 7) as well as for inside points
(diagonal 0A).

A specimen also has been tested at room temperature in bi-axial fatigue on the LMT-Cachan tri-axial
machine ASTREE, during a multi-level loading experiment (load driven experiment). The plasticity,
damage and number of cycles to crack initiation are evaluated by use of the fast methods. This example of

Table 2

Comparison of the energetic methods

r1 (MPa) FE Neuber SED CED

80 req max ¼ 181:5 MPa req max ¼ 184 MPa req max ¼ 182 MPa req max ¼ 202 MPa

p ¼ 2:5 � 10�4 p ¼ 6:5 � 10�5 p ¼ 3:4 � 10�4 p ¼ 3:7 � 10�3

100 req max ¼ 187 MPa req max ¼ 188 MPa req max ¼ 184 MPa req max ¼ 216 MPa

p ¼ 1:22 � 10�3 p ¼ 1:4 � 10�3 p ¼ 7:7 � 10�4 p ¼ 6 � 10�3

120 req max ¼ 193 MPa req max ¼ 194 MPa req max ¼ 188 MPa req max ¼ 228 MPa

p ¼ 2:1 � 10�3 p ¼ 2:4 � 10�3 p ¼ 1:3 � 10�3 p ¼ 8 � 10�3
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application is used here to validate the damage estimation up to failure (the damage is accumulated over
each level up to D ¼ Dc).

For information, note that five other specimens of the same material have been tested in creep and
fatigue at variable temperature (up to 600 �C). The experimental results as well as a complete mechanical
and numerical modeling can be found in (Sermage et al., 2000).

5.2.1. Monotonic loading
A symmetric displacement loading U ¼ 0:1 or 0.5 mm is applied normally to each lateral side. Plasticity

and damage are localized around the free edge point A for the first loading. For U ¼ 0:5 mm, the sample is
fully plastified.

The mesh of 1/4 of the sample is drawn in Fig. 8. In order to get accurate reference FE solutions it has
been optimized by use of adaptative methods. Coorevits adaptative interface INTERF between ABAQUS
and a mesh builder has been used (Coorevits et al., 1997).

Fig. 7. Bi-axial testing specimen.
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ABAQUS elastic and plastic computation are presented. Fig. 9 represents the von Mises equivalent
stress calculated along the diagonal line 0A (A: edge middle point) and Fig. 10 along the free edge AB. They
also compare the different fast methods to a FE elasto-plastic FE computation. The elastic solution is used
as an input to the plasticity evaluation by the local energetic methods (Eqs. (33)–(36)). The loading U ¼ 0:1
mm corresponds to localized plasticity when U ¼ 0:5 mm corresponds to a fully plastified sample. For
U ¼ 0:5 mm, the von Mises stress at the specimen center is Req ¼ 893:6 MPa in elasticity and then
req ¼ 240:6 MPa in FE plasticity (to be compared to a 180 MPa yield stress).

The accuracy of Neuber and SED methods are of about a few percents when plasticity is localized (first
loading) and of about 10% else: even if the methods have only been justified for small scale yielding, they
still apply when it is no longer the case. Finally, SED method is a little bit better than Neuber’s at free edge
points, result coherent with Section 3 justifications.

Fig. 8. Maltese cross specimen and optimized mesh (320 six nodes triangles).

Fig. 9. von Mises stress along diagonal OA.
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5.2.2. Multi-level fatigue loading
As for the monotonic experiment, two in-phase proportional loads are applied on the lateral sides of the

bi-axial specimen. The total loading consists in 13 blocks of cyclic loads varying between a zero minimum
load and a constant maximum load F max

i (Fig. 11). The first block is made of 38 000 cycles at F max
1 ¼ 35 kN,

then the load is increased by 5 kN every 100 cycles up to F max
13 ¼ 95 kN. At this last level failure occurs after

Fig. 11. Multi-level fatigue loading.

Fig. 10. von Mises stress along the edge AB.
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a number of cycles N 95
R (occurrence of a macroscopic crack in the edge). Experimentally a number

N 95
R ¼ 3050 cycles is measured (to be added to 39 100 for the total number of cycles to failure).
The minimum (zero) and maximum applied loads are not symmetric, then the monotonic as well as the

cyclic form of the energetic methods need to be applied. Due to elasticity linearity, only one FE elastic
computation is needed as reference.

Eqs. (26)–(30) give the maximum von Mises stress reached for each level when the cyclic methods of
Section 2.2 (Eqs. (39), (40) and (52)–(54)) give the von Mises amplitude. The damage threshold in given by
Eq. (68), it is reached after N0 cycles (Eq. (81)). The accumulated plastic strain increment per cycle is
calculated by use of Eqs. (43) or (52), the damage increment by use of Eq. (79). The damage increments over
each block are summed up to D ¼ Dc which corresponds then to crack initiation.

At the beginning of the last level, D ¼ 0:11 for Neuber method and D ¼ 0:05 for SED method (Fig. 1)
and finally a number of cycles at the last level N 95

R ¼ 750 (Neuber) and N 95
R ¼ 3670 (SED method) are

estimated (to be compared to 3050).
The proposed procedure gives excellent results (at least for the SED method) after such a complex fa-

tigue loading.

6. Conclusion

The energetic methods (Neuber, SED, CED) have been justified by means of path-independent integrals.
They have been completed by the theoretical study of the stress triaxiality along a free edge (for plane
problems). As far as tiaxiality is concerned to predict crack initiation, Tr ¼ 0:33 for plane stress, Tr ¼ 0:58
for plane strain and Tr equal to the triaxiality calculated in elasticity in the other cases are good candidates
for correct approximations.

Damage Mechanics allows then for the estimation of the crack initiation conditions: accumulated plastic
strain in ductile fracture, number of cycles in low cycle fatigue.

Two example of applications have been exposed:

• the academic problem of a holed plate (plane strain conditions),
• a bi-axial specimen (Maltese Cross shaped) tested in the triaxial testing machine ASTREE (plane stress

conditions).

Both monotonic and fatigue loading have been applied. Numerical FE computations and experiments
have been performed in order to evaluate the full procedure ‘‘application of an energetic methods followed
by a damage analysis’’. The (corrected) Neuber method is often the best. The method of the SED seems
better when used on a free edge with small plastic strains, as justified. The method of the CED would be
better adapted to edges loaded by a rigid body. The difficulty would be then to determine the stress
triaxiality along the interface.

To conclude, fast determination of localized plasticity and damage may be performed in early design of
mechanical components for monotonic loading as well as for fatigue. The accuracy of the full procedure
(application of an energetic methods followed by a damage analysis) seems sufficient for the design of
mechanical components.
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