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Abstract

Structural failure often follows the initiation of cracks occurring at corners, free edges or interfaces. Continuum
damage mechanics gives quantitative information about such cracking. But when used in a fully coupled manner (with
elasticity and plasticity), it leads to costly computations.

In order to obtain helpful results for a fine and fast design, we propose to determine localized plasticity and damage
by use of local post-calculations, which follow a simple elastic finite element computation. Energetic methods such as
Neuber’s, such as the strain energy density or as the complementary energy density methods, are justified for small scale
yielding by use of path-independent integrals. They are extended to cyclic loading inducing fatigue and the case of
thermal stresses is considered. For plane problems, these methods are completed by the analytical determination of the
stress triaxiality along free edges or rigid inclusions.

The crack initiation conditions are then quickly estimated by the time-integration of Lemaitre’s damage law. Cal-
culations made for a holed plate (plane strain) and for a bi-axial testing specimen (plane stress) validate the meth-
ods. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many criteria are used for structural design and for material selection. Fracture mechanics is powerful
when a cracking state exists. If the safety conditions are defined by the nonexistence of cracks, continuum
damage mechanics (CDM) is the adequate design tool for structures submitted to monotonic loading as
well as to fatigue loading (Lemaitre, 1971; Hayhurst and Leckie, 1973; Hult and Broberg, 1974; Murakami
and Ohno, 1978; Lemaitre and Chaboche, 1985; Kracinovic and Fonseka, 1981; Lemaitre, 1992).

Damage may be taken into account in a fully coupled manner with elasticity and plasticity, but this leads
to costly computations (Benallal et al., 1988; Grange et al., 2000) which are incompatible with an early
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design and with repeated resolutions of the nonlinear mechanical problem. As pre-design is concerned, we
need quick methods for the determination of structural failure, also in fatigue!

When small scale yielding conditions apply, we propose here a three-steps procedure based on an ac-
curate linear elastic FE computation (first step) in which the layers are assumed to be elastic. The second
step is the evaluation of the localized plasticity in the stress concentration zones previously exhibited.
Local energetic methods such as Neuber’s (1961), as the strain energy density (SED, Glinka, 1985) and the
complementary energy density (CED) methods are justified by use of path-independent integrals (Section
2). Neuber’s method is also completed for locally 2D problems by the study of the stress triaxiality along a
free edge. The third step concerns the post-calculation of damage up to crack initiation by the time inte-
gration of Lemaitre’s damage evolution law during the whole loading process.

2. Extended Neuber’s method

Neuber’s method initially proposed for shear (Neuber, 1961), looks like an energy equivalence between
the elastic and the elasto-plastic calculations of the same geometry submitted to the same loading. For
unidimensional states of stress, the product stress x strain in elasticity is assumed to be locally identical to
the same product calculated by means of an elasto-plastic analysis. The plastic state is then determined as
the matching of the constitutive equation with the hyperbola stress x strain = constant (Eq. (1), Fig. 4).
This local method leads to a violation of the equilibrium. It is applied at stress concentration points.

2.1. Tridimensional states of stress

For tridimensional states of stress, the fundamental hypothesis may be written as

0,65 = (04j8)e,s Monotonic loading (1)

AgjjAe;; = (Aoj;Aey) fatigue loading )

elas

where Ao and Ag stand for the stress and strain amplitudes during a cyclic loading and (-)_,. means ‘value

determined from an elastic computation’. An alternative to Eq. (1) may be proposed as

elas

Oeqleq = (O-queq)elas (3)

where goq and &4 are the von Mises equivalent stress and strain. The theoretical justification of Section 3
will lead us to use (1) instead of (3) as far as free edges are concerned.
Plastic behavior is described by an integrated Hencky—Mises law,
ol
0 = Eyjuern — 3G —"g(04q) (4)
eq

P =8(0cq) = R_I(Ueq - oy) (5)
where E;;; is the Hooke tensor (isotropic), £ and G are the Young’s and shear modulus, v the Poisson’s
ratio, p the accumulated plastic strain, R(p) the isotropic hardening law and g, the yield stress. Eq. (5)
corresponds to the yield criterion f = o.q — R(p) — gy, = 0.

The von Mises equivalent stress is solution of the nonlinear equation (1) rewritten:

o’ 22 3(1—2v)

e [ 2 2
3_5 + 8(0eq)0eq = 3((; + —EF [ZH - O-H] (6)

We note with capital letters the elastic solution X;; = (64)usr Zeq = (Teq)etass 2H = (OH) epys-
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The hydrostatic stresses of the elastic and plastic solutions (resp. 2y and o) were assumed to be close in
Lemaitre and Chaboche’s (1985) work. In the general case they are different and can be derived from the
knowledge of the stress triaxiality ratio Tr defined as the hydrostatic stress divided by the equivalent stress
(Rice and Tracey, 1969),

OH Okk
Tr = -2 — Ik 7
f Ocq on 3 (7)
The knowledge of this ratio is an important key in the application of Neuber’s method. Introducing the
triaxiality function R,,

Ry =31+v)+3(1 —2v)Tr’ (8)
Neuber’s von Mises equivalent stress for 3D loading is finally solution of
O—g R‘(TI‘) Zg (Rl’)elas
0ijéij = qT +8(0eq)0eq = (076y) g = qT )

where R,(Tr) has to be determined.
2.2. Stress triaxiality ratio on free edges in plane problems

We expose here an original way to derive under plane deformation assumption the closed-form ex-
pression of the stress triaxiality for points located along free edges.

2.2.1. Plane stress
For a plane stress state, the points located along free edges are submitted to pure tension (or com-
pression). The value of the triaxiality ratio is £1/3.

2.2.2. Plane strain

For a plane strain state, one can show that Tr only depends on the accumulated plastic strain or, in an
equivalent manner, only depends on the von Mises equivalent stress.

Elasticity: The triaxiality ratio evaluated at points located along free edges only depends on Poisson’s
ratio v. Tr neither depends on the loading type nor on its intensity. For v =0, Tr = 1/3 (some composite
materials). For v =1/3, Tr = 0.5. For v~ 0.5, Tr = 1/4/3 ~ 0.58 (rubber). More generally,

1+v
=i e (10)

Plasticity with linear hardening: For plasticity with linear isotropic hardening, the yield function is
written as f = g.q — Kp — 0y = 0, where K is the plastic “tangent”” modulus. The evolution laws governing
the internal thermodynamics variables accumulated plastic strain p and plastic strains &}, are derived from
the normality rule and from the consistency condition df = 0 during the plastic flow.

The boundary conditions (free edges of normal e;: ¢;; = 0), the plane strain condition ¢; = 0 and the
elasto-plastic behavior considered altogether lead to (633 — vd33)/E + (2033 — 02)p/26.q = 0 and to the
following set of equations:

2
O0n =Udeyq and o3 = % (u —24/1— %) Ocq

y 2 -1/2
1—2v+37(1—37) 5 (11)

dp u

Kp+oy
T K+ E) 1 -2 - K(1 - 20)u
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with do., = Kdp and where u = 02,/0¢ is a dead variable for the integration. No assumption about the
loading proportionality is made. With the notations,

K(1—2v) n—1/2
=—2 =(1- 12
1=axig =0-vty) (12)
the closed-form expression for the Tr(p) law is then governed by the parametric representation:
1
Td@zg—6V4—M2 (13)

w

V1 =2 ‘
_ |V exp W[arcsin <@>] % (14)

p(u) X — 5 X
01— —qu o
where
N 2
2B (2 w22 (% (15)
344y 1—2v 1—2v " 3442 1—2v

Eqgs. (13) and (14) may be rewritten as a law Tr = Tr(p) or with Eq. (5) as Tr = Tr(oeq): the triaxiality
ratio on a free edge depends on the von Mises stress only (Fig. 1). For Poisson’s ratios larger than 0.3, there

Perfect plasticity

asymptotic value
075 1 Tr=0.58

05 1 .
=0.35 .
Tr ve0 V=035 v /Elastmlty
0254 v=0
0
0 5 10 15 20
Ep/o,
Linear kinematic hardening (v = 0) Linear kinematic hardening (v = 0.3)
0.75 T T 0.75
N o
0 ; 1‘0 15 0 5I 1‘0 15
Ep/o, Ep/oy

Fig. 1. Stress triaxiality along a free edge.
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Table 1
Saturation value Trgy,
K/E
10-¢ 0.1 0.25 0.5
Tre (v =0) 0.58 0.56 0.54 0.50
Tre (v =0.3) 0.58 0.57 0.56 0.55
Tre (v =0.5) 0.58 0.58 0.58 0.58

is a slight difference about Tr evaluated in elasticity or in plasticity: the triaxiality remains between 0.5 and
0.58. As soon as elastic strains are negligible, Tr reaches a saturation value. For metals it is Tr = 0.58. The
Table 1 gives the values of Trg, as a function of K/E for v =10,0.3,0.5.

Nonlinear hardeningldamage: 1f the hardening law is not linear, variables p and u of Eq. (11) cannot be
separated anymore. One has to fit a linear law in the plastic strain range under consideration and to apply
Egs. (13) and (14) as well. When isotropic damage occurs, the consideration of the effective stress concept
(Kachanov (1958) and Section 4.1) formally leads to the same calculations and the determination of the
triaxiality by Eqgs. (13) and (14) remains valid.

To conclude, one can say that for standard Poisson’s ratios and for plane deformation states, the stress
triaxiality ratio at free edge points does not depend much on the loading, which is then quasi-proportional
(stress tensor locally proportional to a constant tensor, see paragraph 2.2.2). For plane stress Tr = 1/3
when for plane strain Tr = 0.58 is a good value to consider for a quick method. In the general 3D case, Tr
in plasticity may be taken equal to the stress triaxiality ratio computed in elasticity, Tr ~ (Tr),,,,. Once Tr is
known, the triaxiality function R, is easily calculated (Egs. (8) and (9)) can be used to determine the von
Mises equivalent stress as well as the accumulated plastic strain (Eq. (5)).

3. Theoretical justification and other energetic methods

A first attempt to justify Neuber’s method is related to the virtual work principle. For any kinematically
admissible displacement field u* (structure Q of frontier 0Q),

/O'ijS;FjdV:/ O'ijnjude (16)
Q oQ

If the small scale yielding hypothesis is made, one can compare the second member of (16) coming from
an elastic and a plastic computation,

(/ a,-jnju:de) R (/ a,-jnjude> (17)
20 elastic 20 elasto-plastic

computation computation

From the virtual work principle, we end up to a global but useless formulation of Neuber’s Method:

aye.dV ~ aye.dV 18
(/Q e ) elastic (/Q T ) elasto-plastic ( )

computation computation

Another way to proceed is to consider the path-independent integrals (Rice, 1968; Bui, 1978a)
61,{,- . 60',--

vanishing on any closed contour which does not surround holes or cavities. W and W* are respectively the
SED and the CED from which the stresses and the strains are derived:
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_oaw_aw
N aei/ v 60,7

O-[j (20)

This framework applies to constitutive laws such as elasticity or as Hencky—Mises plasticity (no un-
loading). For incremental plasticity, the time-integration under proportional loading hypothesis leads to
the appropriate definition of W or W* (Egs. (29)—(31), (35) and (36)).

3.1. Local energetic methods

Consider now stress concentration zones, confined as drawn in Figs. 2 and 3 and determined numerically
first in elasticity then in elasto-plasticity. As long as small scale yielding applies, the sizes of the plastic zones
given by the two analysis are not very different. For each computation, it is possible to evaluate integrals
(19) along two open paths, C; along the free edge or the rigid inclusion (a rivet for example) and C, far from
the plastic zone. Small scale yielding hypothesis equalizes the integrals along C, coming from the elastic and
the elasto-plastic computations, i.e.,

Ou; Ou;
Wdy — ¢;n; —ds ~ wdy — g;n; —ds 21
< C Y 7 dx ) elastic ( [N Y 7 o ) elasto-plastic ( )

computation computation

By use of the path-independence property, these integrals are also equal along C;. Along a free edge we

get:
</ Wdy) ~ (/ Wdy) (22)
C elastic Ci glasto— lastic

computation omputation

B B
Ci & Plastic  Cl C2
zone
Free edge A Free edge A
Elasticity Plasticity

Fig. 2. Stress concentration zone close to a free edge.

Rivet : u=0 B

C2

Plastic
zone

Fig. 3. Stress concentration zone close to a rigid inclusion.
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By use of the dual integral,

00 00
w*dy — un;—2ds ~ wrdy — u,-n-—”ds) 23
( q Y ! o ) elastic ( q Y ! ox elasto-plastic ( )

computation computation

which simplifies along a rigid inclusion (u = 0) as:

(/ W*dy) ~ (/ W*dy) (24)
C elastic Cy elasto-plastic

computation computation

Along a free edge stress concentration, the mean SED is locally the same for an elastic and for an elasto-
plastic computations using the same boundary conditions (Eq. (22)). Along a rigid inclusion, the equality
concerns the mean CED. For plastic zone with small gradient, we may write the local equality of the
energies calculated in elasticity and in elasto-plasticity.

Because of the equality

e =W+ W* (25)

Neuber’s method will give results (von Mises stress, accumulated plastic strain) between those given by the
SED and CED methods.

To sum up, three energetic methods are justified for small scale yielding (as represented for tension in
Fig. 4):

e Neuber’s method (Eq. (1)),
o SED method: Wpias = Wetas,
e CED method: W, = Wg,.

In the following subsections we particularize these methods for elasto-plasticity with linear isotropic
hardening and with exponential isotropic hardening (for monotonic proportional loading, kinematic
hardening can be reduced to a supplementary isotropic contribution, Desmorat (2000)).

3.1.1. Linear isotropic hardening
Assume that an elastic computation has given the von Mises stress at stress concentration point, noted
2¢q. The application of the energetic methods leads to the evaluation of the von Mises stress in plasticity. In
general, the relationship oq(Z¢q) is implicit. Nevertheless, it can be explicited when linear hardening R = Kp
is considered.
For each method we define the auxiliary function / as the ratio (<1)
Ocq
2eq

h(Zey) = (26)

The energetic methods are compared in Fig. 5 for tension triaxiality (Tr = 1/3). For plastic materials
with small K/E ratio (most materials), the complementary energy remains small in comparison with the
strain energy. Neuber’s and SED methods give then close results.

e 3D Neuber’s method

0-2 Rv 62 R, Oeq\Ocqg — O
oty =T (o) = T Pl )

(27)
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Fig. 4. Energetic methods (Neuber, SED, CED).

fo e J(Eo) + 4R+ ) (240)

2(Ry +£) 2

elas

h(zeq) =

e 3D SED method

2 2 2 2
aequ aequ o

Oeq
W = e ! e de - =
2F +/,,y 0uqg’ (0ea)doeq = 5= + 5

2 E
(Zequ) clas + K 0-3'
2
(RV + % ) 2 eq

h(zeq) =

e 3D CED method

a2 R, Teq G2 R, (0' -0 )2
* __eq _ ¢ cq y
W=t / 8(0eq)dog = 5+ 20

y

(29)

(31)
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Fig. 5. Energetic methods for linear hardening; function 4(2Zeq) = 0eq/2eq (E =200 GPa, K = 6 GPa, Tr = 1/3).

(Z‘zqu) elas N O'?,Rv:|
h(zeq) =

3.1.2. Exponential isotropic hardening
Exponential hardening is written R(p) = R..(1 — e "?) where R, and y are material parameters. The
function g used in the calculation of the accumulated plastic strain (Eq. (4)) is then defined as:

1 Ry + 0y — 0,
p=slow) =L <+> (33)
e Neuber’s method
aqu‘,
OijEi = T + OeaP = (0061} etas .
e SED method
Wzaqu"_,_/oqu dp:aquv‘f'(R +0)p—lR(p)=W (35)
26 7 Jp, 26 VTN oy "
e CED method
L /Ueq pdoe = U (R(p) — R)p+~R(p) = W ()
26" ), T 2E o .

Again, the stress triaxiality in plasticity has to be known in order to apply the energetic methods, from
which oy = Tr - 0¢q and Xy = Tr - 2.

3.2. Extension to cyclic fatigue loading

Path-independent integrals (19) are still defined for cyclic loading. The only need is to consider a cyclic
plasticity constitutive law written in terms of stress and strain amplitudes Ag;;, Ag;;. Formally,
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ow* ow

vy 67
where
" dAg; ! dAg;;
* A o Y — A . Y
) /0 &g, dt o /o %= dr (38)

3.2.1. Expression of the energetic methods
The following energetic methods extended to cyclic loading can be justified in the same manner than for
the monotonic case:

AcyAe; = (AoyAey),,.  extension of Neuber method (39)
0(Ag;) = Welas extension the SED method (40)
o (Ady;) = 0, extension of the CED method (41)

Still from an elastic computation, their application leads to the fast determination of the equivalent stress
amplitude (Ag)eq and of the accumulated plastic strain increment over one cycle Ap. If the applied load,
noted F, ranges between two symmetric values —Fp,,x and +Fp.x, the knowledge of (Ag)eq is sufficient to
determine the maximum von Mises stress and the failure conditions (by integration of the damage law). If
the loading is not symmetrical, the cyclic energetic method has to be completed by use of a monotonic
method in order to evaluate the maximum von Mises stress. The corresponding damage law is derived in
Section 4.3.

3.2.2. Potentials for linear kinematic hardening

For uniaxial tension—compression, the integration of the constitutive laws of elasto—plasticity with ki-
nematic hardening leads to the following equations (with Ac stress amplitude, Ae¢ strain amplitude, AeP
plastic strain amplitude, Ap accumulated plastic strain increment over one cycle),

20 Ao — 20y

Ag="Z4—_—7 42

f i + C (42)
Ag —2
Ap = 2Ae® = 720 — 20y (43)
G
where C; is the tangent modulus. The potentials needed to apply the energetic cyclic methods are:
2 Ag —2
AcAe = (%jt%)m (44)
C 1 1\’

=—|Ae - 20, =— = 4

» == [ € 0y<E Ct>:| (45)
e 11\

For general 3D cyclic loading, such potentials may be derived from the 3D constitutive laws under the
assumption of a proportional loading: in any point M of the structure, the stress tensor remains propor-

tional to a time-independent tensor 7 = 7(M). With the normalization T4 = ,/% T,-})T,-}? =1, this leads to:
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a=1Ts, s=s(t) and |[s| =0 (47)
X =TX, X=X (48)
& =31, & =4g() and p=|&| (49)

and any 3D equation reduces to a scalar law. For example, the linear kinematic hardening evolution law
X =2/3C¢P reduces to X = Ce¢, with C the plastic modulus. The time-integration of the 3D constitutive
equation is then similar to the one for tension/compression. We finally get the 3D laws as:

1
3 AdP
A p = — Y A — 2 1
gl/ 2C (Ag)eq <( g)cq 0)’> (5 )
Ap = 2Ae? = 2 A 2 2
p=28¢" = = ((Ag),, — 20,) (52)

and Egs. (42) and (43) are a particular case of (50) and (52).
The potentials are finally:

(AQ) quv (Ag) eq

Ao-ffASij = E + C <(Ag)eq - 26}’> (53)

ol (B0 —4) ”
@="0F 2C

2
. (Ao)LR <(Ag)eq - 20y>

© =2k * 2C 53
where R, is the triaxiality function (8) in which Tr = (Ag)y/(Ag).,, defines the cyclic stress triaxiality ratio
(and (Ag), = trace Ag/3). Those equations are similar to Eqs. (27), (29) and (31) obtained for the
monotonic case with linear hardening. They lead to the same closed from expressions Ageq = h(AZcq)AZ .
The functions 4 are those of Section 3.1.1 in which ¢4, 2eq, 6y and K have to be formally replaced by Aceg,
AX, 20y and C.

3.3. Thermal stresses

Thermo-elasticity constitutive equation (56) defines an additional thermal expansion leading to thermal
stresses,

&j = Ei;kllo-kl + 0695,'/' or og; = E[jklgk/ - 3aK65U (56)

where 0 is the temperature variation; o = «(f)) is the thermal expansion coefficient and « is the com-
pressibility modulus (elasticity coefficients may also depend on the temperature). The Helmhotz free energy
density py and Gibbs free enthalpy py* are classically:

plp = %Eijklgijgkl — 30(K08kk + %B@z, plp* = m?.X(O',-jsi,- — plp) (57)
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The derived state laws are:

_ Opy _ Opy
=%, T 00 (58)
or,
_ Opy” _ Opy”
= ey T a0 (59)

Sy is the volumic entropy.
Extension of integrals (19) to thermo-elasticity introduces an additional term which is not a contour
integral. Bui (1978b) proposes to write:

I——/F{pd/ dy — u;n; o ds}—i—/ASvade (60)

Ou; o0

The integrals thus defined are nevertheless path-independent and vanish for any closed path not sur-
rounding holes or cavities. The area A is delimited by the contour I'. When the material temperature is
uniform, J reduce to Rice classical J-integral. An equivalent definition of J easier to use and called J, has
been introduced by Aisworth et al. (1978),

Ou; 00
Jy = wdy — g;n;—d 3o — g, dS 62
f /r{ y — oyn; -~ s} +/A oucaxskk (62)

where the elastic energy is in fact W = py — B0*/2.

In the case of adiabatic conditions and in the case of a linear temperature variation, it is then possible to
propose energetic methods by taking into account the temperature dependence of the material parameters.
In the case of a general nonuniform temperature field, the existence of the additional surface integral leads
to the nonequality of the energies locally calculated at a point in isothermal elasticity, in thermo-elasticity
or in thermo—elasto-plasticity. Then, none of the energetic method may be justified.

3.3.1. Adiabatic conditions

An interesting case is to consider adiabatic loading conditions for which S, = 0. Egs. (60) and (61)
surface integrals vanish. Plasticity still being treated as nonlinear elasticity, Neuber’s method remains
unchanged when the SED method becomes the Helmhotz free energy density method,

plp = (plp)thcrmo—clasticity (63)
and the CED method becomes the Gibbs free enthalpy density method,
plp* = (pl//*)thermo—elasticity (64)

3.3.2. Linear temperature variation
We consider here a loading (neither isotherm, neither adiabatic) with a linear temperature variation in
the given zone of stress concentration. If 0 is linear in the x;-coordinate,

0=ax; +b (65)

Bui (1978b) has shown that in this particular case the Jy-integral can then be written as a contour integral,
Ou;
Jy = / {W(e, Ony + 3oka(uy + g2)ny — aijnj% } ds (66)
r

where g, is a x,-primitive of the &, strain component.
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This last formula applies for elasto-plasticity as well with an adequate definition of W. The energetic
methods proposed to evaluate edge-plasticity are then only justified when the second term inside integral
(66) vanishes, i.e. for structures with a weak thickness temperature variation.

4. Localized damage and crack initiation conditions

We assume now that an elastic FE computation followed by a local energetic analysis gives a good
estimation of the plasticity and the triaxiality at the stress concentration point. Crack initiation conditions
are derived afterwards by use of CDM (post-processing). For a “fast” estimation of the damage, this
uncoupled method gives results with the same order of accuracy than the energetic methods previously
described.

For ductile damage and low cycle fatigue, damage occurs at the scale of the representative volume el-
ement (RVE) and Lemaitre’s damage model applies. The damage evolution law is integrated straight
forward with some simplifications.

We do not consider here the case of brittle damage or high cycle fatigue for which the behavior remains
elastic at the RVE scale (plasticity and damage only occur at a micro-scale). The crack initiation conditions
may nevertheless be determined by use of CDM with a two scale damage model (Lemaitre and Doghri,
1994; Lemaitre et al., 1999; Desmorat, 2000; Desmorat and Lemaitre, 2001).

4.1. Effective stress concept and damage law

Damage is described by the state variable D which models a loss of resisting area due to micro-cracks
and micro-cavities (0 <D < 1). Failure of the RVE occurs when D reaches its critical value D.. Isotropic
damage is coupled to elasticity and plasticity by means of the effective stress tensor, 6;; = g;;/(1 — D), i.e.
the stresses g;; are replaced by 6;; in the elasticity law as well as in the yield criterion.

This feature is important because it means that the integrated plasticity law coupled to damage may be
derived as the Hencky—Mises law in which the stress tensor is replaced by the effective stress tensor, i.e.
6;; = OW /0¢;; (no unloading). Thus, when dealing with damage one has to consider the / and J contour
integrals with ¢;; replaced by G;;. As long as plasticity and damage remain localized, the energetic methods
are formally the same as before with o;; replaced by 6,,. They directly lead to the fast estimation of the
accumulated plastic strain and of the effective stress tensor.

The following damage evolution law (Lemaitre, 1992),

. Y\* . 6§qu.
D—(§>p if p=pp, Y= 2E (67)
is used. It applies to damage induced by plasticity and takes into account the stress triaxiality effect on the
growth of damage. The time integration of Eq. (67) allows for the quantification of D for monotonic
loading, for fatigue loading (Dufailly and Lemaitre, 1995) as well as for creep fatigue conditions (Sermage
et al., 2000). The damage strength S, the damage exponent s, the critical damage D, are material parameters
and pp is the loading dependent damage threshold. The energy density release rate Y (associated with D)
and the accumulated plastic strain p are state variables. Y is function of the effective stress (estimated by
means of the energetic method) and of the triaxiality function R, already defined (Eq. (8), R, does not
depend on the damage).

The damage threshold is considered here as related to the energy stored in the RVE during plastic
loading (Desmorat, 2000; Lemaitre et al., 2000; Sermage et al., 2000). This allows to represent the very
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different values experimentally obtained for monotonic and for cyclic loading: the damage threshold for
pure tension, noted &p, is of the order of magnitude of few percents (steels) when pp in fatigue may reach
few hundreds of percents. Based on the calculation of the energy stored in the RVE, the following rela-
tionship has been derived for fatigue:

oy — ay m
=g 2 68
. W(ammﬂ—oy) (68)

where the yield stress oy, the ultimate stress g, the threshold in pure tension &,p and the exponent m are
material parameters; oeq max 1S the maximum von Mises stress reached over the cyclic loading.

The critical point of a structure is determined by means of the equivalent damage stress ¢* = g¢qR!/?
which takes into account the triaxiality effect when von Mises criterion does not. Crack initiation occurs at
this point when D, given by the time-integration of Eq. (67), reaches its critical value:

D = D, — crack initiation (69)

4.2. Unidimensional and threedimensional monotonic loading

Assuming that damage occurs once the hardening is saturated, the plasticity criterion is quasi-verified for
the ultimate stress o,

Ocq

i—p ™0 (70)
Then Y is constant for proportional loading for which the triaxiality ratio Tr remains constant,
o’R,
Yy =+ 71
°E (71)

An obvious integration of the damage law written for a threedimensional and for a onedimensional
loading gives the accumulated plastic strain at crack initiation pr as a function the stress traxiality, of the
damage threshold &,p and of the strain at failure er under uniaxial conditions,

PR = 8pD + (SR — SPD)R;S (72)
and the state of damage for any value of p simply is:

D =D, m]gi (73)
&R — épD

In order to apply design criteria such as N < Ng or D < Dsiven the following quantities must be known:

e the values of the accumulated plastic strain p and of the triaxiality function R, (from the structure cal-
culation, energetic methods),

e as material parameters: the damage threshold ¢,p, the total strain at failure in pure tension &g, the critical
damage D, the damage exponent s, the ultimate stress oy, the yield stress oy.

4.3. Low cycle fatigue
For low cycle fatigue, the damage D increases twice per cycle, each time corresponding to yield in tension

(plastic strain increment dp,, damage increment 6D, ) and in compression (plastic strain increment dp_,
damage increment 6D_). We make here the hypothesis of a linear kinematic hardening.
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If the fatigue loading consists in cycling between the same two loads F,;, and Fp.x, such an hypothesis
leads to a closed stress—strain cycle and then to:

Ap

dp, =0p_=0dp= > (74)

where Ap is the plastic strain increment over one cycle.

Further hypotheses are made in order to simplify the damage law for general cyclic loading. We assume
first that the effective stress is correctly estimated from the previous local energetic analysis. The coupling of
the energy release rate ¥ with damage is made by means of 6., and Y is assumed not to vary much between
the applied load inducing the reach of the yield stress and the maximum load F},,, inducing the maximum
von Mises Stress Geq max, 1.€.,

&, k.
Yo~ —or— (75)
Close to the minimum load Fr,, inducing the minimum von Mises Stress oeq min, W€ get
Y ~ LQ min (76)
N 2F
From Eq. (67), the damage increment over one cycle N of loading is then

5D (Fom + o) B[ Acy > 20,

— 5 Ap if

SN 2(2ES) { 7> o (77)

ST?/ =0 else

The local maximum von Mises effective stress at the critical point Geq max is determined by use of monotonic
energetic methods, Adq is the equivalent effective stress amplitude over the considered cycle and is de-
termined by use of the cyclic methods. Then Geq min = Geq max — AGeq-

For a complex history of loading, a numerical integration of Eq. (67) is necessary to obtain the number
of cycles to crack initiation Ny corresponding to D = D, or the evolution of damage D(N). If the loading is
periodic then

D= (&gc; max + &ggl min)RiAp (N N, ) (78)
B 2(2ES)° 0

where N, is the number of cycles to reach p = pp (pp calculated by use of Eq. (68)),

)
M= (79)
Finally,
2(2ES)'D.
Nr =N, + (2ES) (80)

(6-&2:?1 max + &gc; min)Ri’Ap
is the number of cycles to crack initiation. Egs. (79)—(82) generalizes the so-called Manson—Coffin law
(Coffin, 1954; Manson, 1959). For a single level loading, the amount of damage after N cycles is:

N — Ny

D=D——2
Nr — No

(81)
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If the loading is periodic by blocks, and if damage initiates during the first cyclic level after N, cycles,

Ny — Ny N;
— 4y, —L=1 82
Ner = No TP N, (82)
(if not please refer to Lemaitre and Desmorat (2001) and Desmorat and Lemaitre (2001)), The hypotheses
stated induces the linear accumulation rule of Palmgreen—Miner only if N, is small (Ny < Ny).
In order to apply design criteria such as N < Ng or D < Dy, the following quantities must be known:

¢ the maximum and minimum effective von Mises stress Geq max and Geq min, the value of the triaxiality func-
tion R, and the accumulated plastic strain amplitude Ap (from the structure calculation, fast energetic
methods),

e as material parameters: the Young’s modulus E, the Poisson’s ratio v, the yield stress oy, the ultimate
stress g, the plastic modulus C, the damage threshold in pure tension ¢,p, the exponent m, the critical
damage D, the damage strength S, the damage exponent s.

4.4. Material properties of a 2 1/4 Cr steel

All the methods described need material parameters related to specific models. These parameters may be
obtained from tensile tests either monotonic or cyclic at large strain amplitude. The properties of the 2 1/4
Cr steel used in headers of fossil plants are recalled here at room temperature. The full set of temperature
dependent parameters (from 20 to 600 °C) as well as the identification procedure is given in (Sermage, 1998;
Sermage et al., 2000).

4.4.1. Elasto-plasticity
From the tests results shown in Fig. 6 an exponential hardening describes well the plastic behavior. The
material parameters for monotonic behavior at room temperature are: £ = 200 GPa, v = 0.3, g, = 180
MPa, R = R (1 — e "), Ry, =270 MPa, y = 33. The ultimate stress o, = 450 MPa is equal to oy + R.
For strains smaller than 4%, the hardening is considered as linear: R = Kp, K = 6000 MPa. For cyclic
loading with strains smaller than 4%, linear kinematic hardening X = 2/3 Ce? of modulus C = K = 6000
MPa is assumed.

4.4.2. Damage

The damage parameters are deduced from damage versus accumulated plastic strain curve, the damage
being evaluated by its influence on the elasticity modulus. Monotonic (with unloading) and cyclic tests may
be considered.

800 T T T T

for damage measurement)

P
I _ &—— Linear hardening
600 |- 7 B
= Exponentiel hardenin,
g L _ _ - A/ Xp g
E 400 T iﬂ\:\—‘
ﬁ f 3 T~ Experiment (with unioading
o :
A i

200

i
i
.igl.

2 004 006 0.08 0.1

Plastic strain

Fig. 6. Identification of plasticity parameters.
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For the 2 1/4 Cr steel: e,p =0.12, m =2, § =2.8 MPa, s =2, D, = 0.2 and the damage threshold in
fatigue is given by Eq. (68).

5. Application to representative structures
5.1. Thick plate with a hole

Let us first consider the academic problem of a plate with a hole. The plate is large enough to be
considered as infinite. It is thick enough for the plane strain conditions to apply. This last feature is im-
portant because previous works (Sharpe et al., 1992) have shown the limitations of classical Neuber method
under such conditions. We will show that the stress triaxiality correction Tr = 0.58 proposed in Section 1
makes the energetic methods (at least Neuber and SED) accurate under the plane strain assumption.

The closed-form elastic solution of the problem of an infinite plate with a hole submitted to a tensile
remote stress o, seems to be due to Kirsh in 1898. It constitutes our elastic reference calculation with an
usual elastic stress concentration factor of three.

For various loading intensity, we compare in Table 2 the fast plasticity estimations by the different
methods at the stress concentration point (post-calculation of the analytical solution, Egs. (34)—(36)) with
an elasto-plastic FEM computation. The material considered is the 2 1/4 Cr steel at room temperature of
Section 4.4.

At small plastic strains, small scale yielding occurs and SED method is the most accurate. This result is
consistent with the theoretical justification of Section 3. As the applied load increases, the plasticity be-
comes less confined and Neuber method (with Tr = 0.58) is the best.

5.2. Failure of a bi-axial specimen

A bi-axial testing specimen has been designed in order to exhibit stress concentrations and localized
plasticity and damage at notches (Fig. 7). Computations of the specimen have been made in elasticity, in
elasto-plasticity and in elasto-plasticity coupled to damage. Due to the load capacity of the machine, a 4.5
mm thin and 120 mm long specimen is considered and plane stress conditions apply. The edges are then in
pure tension with a stress triaxiality ratio of 1/3.

For monotonic loading, the local plasticity levels are obtained by use of the energetic methods. They are
compared to FE computations for points located on the edge (point A, Fig. 7) as well as for inside points
(diagonal 0A).

A specimen also has been tested at room temperature in bi-axial fatigue on the LMT-Cachan tri-axial
machine ASTREE, during a multi-level loading experiment (load driven experiment). The plasticity,
damage and number of cycles to crack initiation are evaluated by use of the fast methods. This example of

Table 2
Comparison of the energetic methods
0o (MPa) FE Neuber SED CED
80 Geqmax = 181.5 MPa Geqmax = 184 MPa Geqmax = 182 MPa Geqmax = 202 MPa
p=25x10" p=65x%10"° p=34x10" p=37x1073
100 Geqmax = 187 MPa Teqmax = 188 MPa Geqmax = 184 MPa Geqmax = 216 MPa
p=122x1073 p=14x1073 p=77x10"* p=6x1073
120 Geqmax = 193 MPa Geqmax = 194 MPa Geqmax = 188 MPa Geq max = 228 MPa

p=21x10"

p=24x10"

p=13x10"3

p=8x1073




3306 R. Desmorat | International Journal of Solids and Structures 39 (2002) 3289-3310

asinn .
x
{ >—{=[oa[a]s]

i[O 07O O]
0000

U RN (R NN RN R RN

FM *

0y

i
a

%

N

+0,5

80 +0

5=
o

o
) =t

% 80 4uLfILY —{loaals]

32 Troush 8,5 0

P g B ¢)04®

ool
o010

1

i
¢¢¢

8x

Fig. 7. Bi-axial testing specimen.

application is used here to validate the damage estimation up to failure (the damage is accumulated over
each level up to D = D,).

For information, note that five other specimens of the same material have been tested in creep and
fatigue at variable temperature (up to 600 °C). The experimental results as well as a complete mechanical
and numerical modeling can be found in (Sermage et al., 2000).

5.2.1. Monotonic loading

A symmetric displacement loading U = 0.1 or 0.5 mm is applied normally to each lateral side. Plasticity
and damage are localized around the free edge point A for the first loading. For U = 0.5 mm, the sample is
fully plastified.

The mesh of 1/4 of the sample is drawn in Fig. 8. In order to get accurate reference FE solutions it has
been optimized by use of adaptative methods. Coorevits adaptative interface INTERF between ABAQUS
and a mesh builder has been used (Coorevits et al., 1997).
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Fig. 8. Maltese cross specimen and optimized mesh (320 six nodes triangles).

ABAQUS eclastic and plastic computation are presented. Fig. 9 represents the von Mises equivalent
stress calculated along the diagonal line 0A (A: edge middle point) and Fig. 10 along the free edge AB. They
also compare the different fast methods to a FE elasto-plastic FE computation. The elastic solution is used
as an input to the plasticity evaluation by the local energetic methods (Eqgs. (33)—(36)). The loading U = 0.1
mm corresponds to localized plasticity when U = 0.5 mm corresponds to a fully plastified sample. For
U = 0.5 mm, the von Mises stress at the specimen center is X.q = 893.6 MPa in elasticity and then
0.q = 240.6 MPa in FE plasticity (to be compared to a 180 MPa yield stress).

The accuracy of Neuber and SED methods are of about a few percents when plasticity is localized (first
loading) and of about 10% else: even if the methods have only been justified for small scale yielding, they
still apply when it is no longer the case. Finally, SED method is a little bit better than Neuber’s at free edge
points, result coherent with Section 3 justifications.
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Fig. 9. von Mises stress along diagonal OA.
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5.2.2. Multi-level fatigue loading

As for the monotonic experiment, two in-phase proportional loads are applied on the lateral sides of the
bi-axial specimen. The total loading consists in 13 blocks of cyclic loads varying between a zero minimum
load and a constant maximum load F™** (Fig. 11). The first block is made of 38 000 cycles at F{™* = 35 kN,
then the load is increased by 5 kN every 100 cycles up to F3** = 95 kN. At this last level failure occurs after

i Number

I
IR -\ of>cycles
<> <> <> ht—— ok
100 100 100
Experiment 38000 NR = 3050 cycles
1100
Neuber D : 0.07 p=0.11 NR = 750 cycles
I T
SED Method D =0.035 D=0.05 NR = 3670 cycles

Fig. 11. Multi-level fatigue loading.
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a number of cycles Np> (occurrence of a macroscopic crack in the edge). Experimentally a number
Ng> = 3050 cycles is measured (to be added to 39 100 for the total number of cycles to failure).

The minimum (zero) and maximum applied loads are not symmetric, then the monotonic as well as the
cyclic form of the energetic methods need to be applied. Due to elasticity linearity, only one FE elastic
computation is needed as reference.

Egs. (26)—(30) give the maximum von Mises stress reached for each level when the cyclic methods of
Section 2.2 (Egs. (39), (40) and (52)—(54)) give the von Mises amplitude. The damage threshold in given by
Eq. (68), it is reached after N, cycles (Eq. (81)). The accumulated plastic strain increment per cycle is
calculated by use of Egs. (43) or (52), the damage increment by use of Eq. (79). The damage increments over
each block are summed up to D = D, which corresponds then to crack initiation.

At the beginning of the last level, D = 0.11 for Neuber method and D = 0.05 for SED method (Fig. 1)
and finally a number of cycles at the last level N° = 750 (Neuber) and N> = 3670 (SED method) are
estimated (to be compared to 3050).

The proposed procedure gives excellent results (at least for the SED method) after such a complex fa-
tigue loading.

6. Conclusion

The energetic methods (Neuber, SED, CED) have been justified by means of path-independent integrals.
They have been completed by the theoretical study of the stress triaxiality along a free edge (for plane
problems). As far as tiaxiality is concerned to predict crack initiation, Tr = 0.33 for plane stress, Tr = 0.58
for plane strain and Tr equal to the triaxiality calculated in elasticity in the other cases are good candidates
for correct approximations.

Damage Mechanics allows then for the estimation of the crack initiation conditions: accumulated plastic
strain in ductile fracture, number of cycles in low cycle fatigue.

Two example of applications have been exposed:

¢ the academic problem of a holed plate (plane strain conditions),
e a bi-axial specimen (Maltese Cross shaped) tested in the triaxial testing machine ASTREE (plane stress
conditions).

Both monotonic and fatigue loading have been applied. Numerical FE computations and experiments
have been performed in order to evaluate the full procedure “application of an energetic methods followed
by a damage analysis”. The (corrected) Neuber method is often the best. The method of the SED seems
better when used on a free edge with small plastic strains, as justified. The method of the CED would be
better adapted to edges loaded by a rigid body. The difficulty would be then to determine the stress
triaxiality along the interface.

To conclude, fast determination of localized plasticity and damage may be performed in early design of
mechanical components for monotonic loading as well as for fatigue. The accuracy of the full procedure
(application of an energetic methods followed by a damage analysis) seems sufficient for the design of
mechanical components.
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